Αλγόριθμοι
Διδάσκων/ουσα: Ανδρόνικος Θεόδωρος
Κωδικός Μαθήματος: HY-020
Τύπος Μαθήματος: Μάθημα Κορμού
Επίπεδο Μαθήματος: Προπτυχιακό
Γλώσσα Μαθήματος: Ελληνικά
Εξάμηνο: Δ΄
ECTS: 6
Διδακτικές Μονάδες: 4
Ώρες Διάλεξης: 4
Σύνολο Ωρών: 4
Σελίδα E Class: https://opencourses.ionio.gr/courses/DDI189/
Αντικειμενικοί Στόχοι - Επιδιωκόμενα Μαθησιακά Αποτελέσματα:
Το μάθημα επιδιώκει την εμπέδωση από την πλευρά των φοιτητριών και φοιτητών της έννοιας των αλγορίθμων, καθώς και των σημαντικότερων τεχνικών με τις οποίες γίνεται η ανάλυση των αλγορίθμων ως προς την πολυπλοκότητά τους.
Με την επιτυχή ολοκλήρωση των σπουδών στο μάθημα οι φοιτήτριες και φοιτητές θα είναι σε θέση:
- Να κατανοήσουν σε βάθος την έννοια του αλγόριθμου.
- Να εξοικειωθούν με το θεωρητικό υπόβαθρο και τις τεχνικές που χρησιμοποιούνται για την επίλυση αναδρομικών σχέσεων, για την ανάλυση αλγορίθμων και την εύρεσης της πολυπλοκότητάς τους.
- Να εξοικειωθούν με τις ιδιότητες και τον τρόπο χρήσης των πιο γνωστών αλγόριθμων για αναζήτηση, ταξινόμηση, επίλυση προβλημάτων πάνω σε γραφήματα, καθώς και δυναμικού προγραμματισμού.
- Να κατανοήσουν εισαγωγικές έννοιες από τη Θεωρία Υπολογιστικής Πολυπλοκότητας.
Περιεχόμενο (Syllabus):
Το μάθημα απευθύνεται σε φοιτήτριες και φοιτητές του δεύτερου έτους σπουδών. Καλύπτει τα εξής θέματα:
- Η έννοια του αλγορίθμου και της πολυπλοκότητας. Οι βασικές έννοιες της ανάλυσης αλγορίθμων και το απαιτούμενο μαθηματικό υπόβαθρο.
- Τεχνικές επίλυσης αναδρομικών εξισώσεων και τεχνικές σχεδίασης αλγορίθμων. Η τεχνική «διαίρει και βασίλευε».
- Ο αλγόριθμος της γρήγορης ταξινόμησης και ο ελάχιστος χρόνος εκτέλεσης αλγορίθμων ταξινόμησης.
- Η τεχνική του δυναμικού προγραμματισμού, η ιδιότητα βέλτιστων επιμέρους δομών και το πρόβλημα του πολλαπλασιασμού ακολουθίας πινάκων.
- Το ακέραιο πρόβλημα του σακιδίου, το πρόβλημα της διαμέρισης και η άπληστη τεχνική. Δρομολόγηση εργασιών, απληστία και το κλασματικό πρόβλημα του σακιδίου.
- Θεωρία γραφημάτων και αναπαράσταση γραφημάτων. Αλγόριθμοι εξερεύνησης γραφημάτων: αναζήτηση πρώτα σε πλάτος, αναζήτηση πρώτα σε βάθος και τοπολογική ταξινόμηση.
- Ελάχιστα επικαλύπτοντα δένδρα. Άπληστος υπολογισμός ελάχιστου επικαλύπτοντος δέντρου.
- Συντομότερα μονοπάτια, συντομότερα μονοπάτια μοναδικής πηγής και συντομότερα μονοπάτια για όλα τα ζεύγη κορυφών.
- Οπισθοδρόμηση, διακλάδωση και φράξιμο.
- Βασικοί αλγόριθμοι συμβολοσειρών.
- Εισαγωγή στη Θεωρία Υπολογιστικής Πολυπλοκότητας.
Συνιστώμενη βιβλιογραφία προς μελέτη:
- “ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ”, Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Εκδόσεις ΙΤΕ - Πανεπιστημιακές Εκδόσεις Κρήτης, ISBN 978-960-524-473-6, 2016
- “ΑΛΓΟΡΙΘΜΟΙ”, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Εκδόσεις Κλειδάριθμος ΕΠΕ, ISBN 978-960-461-211-6, 2009
- “ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ”, Jon Kleinberg, Eva Tardos, Εκδόσεις Κλειδάριθμος ΕΠΕ, ISBN 978-960-461-207-9, 2009
Επιστροφή
Σπουδές
Κτίριο Γραμματειών (Κτίριο 3)
Πλατεία Τσιριγώτη 7 (πρώην Πλατεία Παλιού Ψυχιατρείου)
Κέρκυρα, 49100
τηλ:26610 87760 / 87761 / 87763
e-mail: cs@ionio.gr
e-mail: cs@ionio.gr
<< | < | Νοέμβριος 2024 |
> | >> | ||
Δε | Τρ | Τε | Πε | Πα | Σα | Κυ |
1 |
2 |
3 |
||||
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
Σήμερα,
Πέμπτη 14-11-2024
ΤΔΔΣ: 2η Προκήρυξη Πρακτικής Άσκησης Erasmus+ Εαρινού Εξαμήνου 2024-2025
Έναρξη: 25-10-2024 |Λήξη: 18-11-2024
[Σε Εξέλιξη]